Unit - 2 Spectroscopy #### **Spectroscopy** Spectroscopy is the branch of science which deals with the determination of the structure of a compound through the interaction of electromagnetic radiation with the matter. Spectroscopy are terms used to refer to the measurement of radiation intensity as a function of The energy of a photon is given by E=hv $= hc/\lambda$ Where, wavelength. **h**= Planck's constant. speed of light (c) = 3×10^{10} cm/sec. λ = Wavelength of radiation Wave number is defined as the number of wavelengths per unit distance (cm $^{-1}$). Wave numbers are usually measured in units of reciprocal meters (1/m, or m $^{-1}$) or reciprocal centimeters (1/cm, or cm $^{-1}$). λ is the wavelength $$wavenumber(\tilde{\nu}) = \frac{1}{\lambda}$$ #### **Electromagnetic radiation** Electromagnetic radiation is a form of energy that is transmitted through space at an enormous velocity. Visible light is a common example of electromagnetic radiation. According to wave nature of radiations, the <u>electromagnetic waves</u> consist of oscillating electric and magnetic fields mutually perpendicular to each other. The **Electromagnetic Spectrum** is a representation of all electromagnetic waves arranged according to frequency, wavelength or wave number. #### The electromagnetic spectrum includes - Radio waves, which have longer wavelengths - UV & X-rays, which have short wavelengths, and - Visible light, which has wavelengths between those of radio waves and x-rays. | Region | Frequency | Wavelength | |-------------|--|---------------| | Radio | < 3x109 Hz | > 10 cm | | Microwave | 3x109 - 3x1011 Hz | 10 - 0.1 cm | | Infrared | 3x1011 - 4x1014 Hz | 1000 – 0.7 μm | | Visible | 4x10 ¹⁴ - 7.5x10 ¹⁴ Hz | 700 – 400 nm | | Ultraviolet | 7.5x10 ¹⁴ - 3x10 ¹⁶ Hz | 400 – 10 nm | | X-ray | 3x1016 - 3x1019 Hz | 10 – 0.01 nm | | γ-ray | > 3x10 ¹⁹ Hz | < 0.01 nm | #### **Practical Applications of Electromagnetic Waves** - The radio waves and microwaves discovered by Hertz used for wireless, television, radio and mobile communication. - The visible light portion of the electromagnetic spectrum for visual effects of colors which can be seen by our eyes. - The X-rays discovered by Roentgen useful in imaging of internal body structure and deformity like fracture in bones. - The high ultraviolet radiation has energies to ionize the atoms causing chemical reactions and causes adverse effect on skin. - The gamma rays discovered by Paul Villard are useful for ionization purposes. #### **Advantages of Spectroscopic Analusis** - 1. Fast and simple analysis - 2. Little or no sample preparation is usually required. - 3. Less time required. - 4. Direct and non-invasive analyses are possible. - 5. Non-destructive. - 6. Phusical and chemical properties of sample does not alter after the analysis. - 7. The substance can be used for other analysis after treatment. - 8. Very less substance is required. - 9. They are relatively inexpensive with respect to analysis time and reagents. - 10. The results are accurate as compared to other analysis # Instrumentation Spectrophotometer consists of following components as shown in figure. - Source of radiation (Lamp) - Monochromator - •Sample or reference cell - Detector - Recorder percent transmission (%T) = $$\frac{1}{I_0}$$ x 100 I_o = intensity of the light entering the sample I = intensity of the light leaving the sample #### **Absorbance (A) and Transmittance (T)** Absorbance can be defined as the base-ten logarithm of the reciprocal of the transmittance: $$T = I/I_o$$ $$A = \log 1/T = -\log T = -\log I/I_o$$ $$A = \log 1/T, \qquad \text{If Transmittance is given in } \%$$ $$= \log 1/T/100$$ $$= \log 100/T$$ $$= \log 100 - \log T\%$$ $$Absorbance A = 2 - \log T\%$$ #### Q. Calculate absorbance if T% is 80 #### Solution $$T\% = 80 \text{ means } T = 80/100$$ $$A = log 1/T$$ $$= log 1/80/100$$ $$= log 100/80$$ $$= \log 10 - \log 8$$ $$= 1 - \log 2^3$$ $$= 1 - 3\log 2$$ $$= 1 - 3 \times 0.3010$$ $$= 1 - 0.9030$$ $$= 0.097$$ Answer Q. When UV light is passed through a solution, the radiation power is reduced to 50%. Calculate the absorbance. $$I_0 \qquad \qquad I$$ Incident Light $$\overbrace{l}$$ Transmitted Light #### Solution Let $$I_o = P_o$$ and $I = P$ $P = Power$ $P_o = 100$ $P = 50$ $P = I/I_o$ P #### Types of spectra - Absorption Spectra - Emission Spectra #### **Absorption Spectra** When white light is passed through a substance and observed through a spectroscope, it is found that radiation of certain wavelengths are absorbed, the spectra obtained is called as Absorption spectra. #### **Emission Spectra** When an excited electron comes down from higher energy state to lower energy state by emitting absorbed radiation and the light emitted by the substance is passed through a prism and examined by spectroscope, the spectra obtained is called as Emission Spectra. #### **Types of spectroscopy** **1. Rotational Spectroscopy** is concerned with the measurement of the energies of transitions between quantized rotational states of molecules in the gas phase. The spectra of polar molecules can be measured in absorption or emission by Microwave spectroscopy or Far infrared spectroscopy. 2. Vibrational Spectroscopy or Infrared spectroscopy (IR Spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. #### 3. UV-Visible Spectroscopy Ultraviolet-visible spectroscopy or ultraviolet-visible spectrophotometry (UV-Vis or UV/Vis) refers to absorption spectroscopy in the ultraviolet-visible spectral region. It uses light in the visible and adjacent (near-UV and near-infrared ranges. UV/Vis spectrophotometer is used in the quantitative determination of concentrations of the absorber in the solutions of transition metal ions and highly conjugated organic compounds. The UV region extends from 10-400 nm while the visible region extends from 400-800 nm. Further it is divided into two regions viz, near UV 200-400 nm and far UV 10-200 nm. The UV spectrum is composed of a few broad bands of spectrum. The wavelength of maximum absorbance is referred to as $\lambda_{max'}$ #### **Principle** Absorption of UV-visible light brings changes in the electronic states of molecules associated with the excitation of an electron from lower to higher energy level. Each level is associated with number of vibrational sub levels and each vibrational sublevel is associated with a number of rotational sub levels. 5/7/2021 #### **Types of Transitions** #### **Electronic Excitation** Electronic transition involves the excitation of electron from one orbital to another orbital of higher energy. In a molecule electron promoted may be σ -electron, a π -electron or an n-electron (nonbonding). Thus four types of transitions are possible Low Energy $n \rightarrow \prod^* < \prod_{K \mapsto n} \prod_{K \mapsto n} \prod_{K \mapsto n} K < \sigma \rightarrow \sigma^* + +$ - $\sigma \rightarrow \sigma^*$ **Transition:** the transition in which σ -electron is **excited to an antibonding \sigma^* orbital**. Energy required for this transition is very high hence they occur at shorter wavelength. e.g. singly bonded saturated hydrocarbon molecules- CH₄, C₂H₆ - $n\rightarrow \sigma^*$ **Transition**: the transition in which **nonbonding**electron is excited to an antibonding σ^* orbital. e. g. compounds having nonbonding (Lone pair) electrons on oxygen, nitrogen, sulfur or halogens show this transition. NH₃, OH, SH - $n\rightarrow \pi^*$ **Transition**: the transition in which **nonbonding**electron is excited to an antibonding π^* orbital. Compounds having multiple bonds between hetero atoms containing lone pair e-such as C=O, C=S, N=O, C \equiv N etc. These transition require only small amount of energy. - $\pi \rightarrow \pi^*$ **Transition:** the transition in which π -electron is **excited to an antibonding** π^* **orbital.** Unsaturated hydrocarbon C=C, C\\(\pi\C_\pi\H_2\C=CH_2\), HC\\\\=CH #### **Beer-Lamberts Law** The Beer-Lambert law states that the 'absorbance of a solution is directly proportional to the concentration of the absorbing species in the solution and the path length.' The amount of light absorbed (A) is proportional to how many molecules or the concentration (c) of molecules that are absorbing light, and how far the UV light must pass through this concentration or the path length l. These relationships are shown below. $$A \propto c$$ $A \propto l$ $A \propto c \times l$ **A** = εcl Beer-Lambert Equation ε is constant, The symbol epsilon is the molar absorptivity of the solution. Incident Light **Transmitted Light** Q. Calculate the molar absorptivity of a 1 x 10⁻⁴ M solution, which has an absorbance of 0.20, when the path length is 2.5 cm. Solution: $$A = \epsilon c l$$ $l = 2.5 \text{ cm}$ $A = 0.20$ $C = 1 \times 10^{-4} \text{ M}$ $\epsilon = ?$ So $\epsilon = A / l c$ $= 0.20 / 2.5 \times 1 \times 10^{-4}$ Answer $= 800 \text{ dm}^3/\text{mol/cm}$ Q. In a spectrophotometric cell of 2.0 cm path length, the solution of a substance shows the absorbance value of 1.0. If the molar absorptivity of the compound is $2 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$, Calculate the concentration of the substance in solution. #### Solution ``` Path Length (L) = 2.0 \text{ cm} Molar Absorptivity (\epsilon) = 2 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1} Absorbance (A) = 1.0 A = \epsilon \times C \times L 1.0 = 2 \times 10^4 \times C \times 2 C = 1/2 \times 2 \times 10^4 C = 1/4 \times 10^4 C = 2.5 \times 10^{-5} \text{ mol/L} ``` Q. A solution shows a transmittance of 20%, when taken in a cell of 2.5 cm thickness. Calculate its concentration, if the molar absorption coefficient is 12000 dm3/mol/cm. ``` Solution: A = 2 - \log_{10} \%T = 2 - \log_{10} 20 = 2 - 1.301 = 0.698 A = \varepsilon l c l = 2.5 cm \varepsilon= 12000 dm3/mol/cm A = 0.698 c=? So, = A/\epsilon l = 0.698 / 12000 \times 2.5 Answer = 2.33 \times 10^{-5} \text{ mol / dm}^3 ``` Q. A solution of chemical 'A' having its 0.14 mol L^{-1} concentration has an absorbance of 0.42. Another solution of 'A' under the same conditions has an absorbance of 0.36. What is the concentration of this solution of 'A'? A = $$\varepsilon$$ x C x L A ∞ C A₁/A₂ = C₁/C₂ 0.42/0.36 = 0.14/ C₂ C₂= 0.36 × 0.14/0.42 C₂= 0.12 mol L⁻¹ #### Terms used in UV-Visible spectroscopy - **Chromophores:** the group or linkages that impart colour to the substance or the colour carrier groups are called as Chromophores. It is also defined as the substance that absorbs radiation in UV-Visible range are called as Chromophores. Presence of one or more unsaturated linkages C=C, C=C, C=C, C=N etc. - **Auxochrome:** they do not act as a chromophore means they are not responsible for colour but they are colour enhancer. In their presence the λ_{max} shifts towards Red end i.e. larger wavelength. Examples –OR, –OH, –NH₂, –NHR groups etc. - Bathochromic Effect or Red Shift: It is a shift of an absorption maxima towards longer wavelength due to change in medium or presence of auxochrome or addition of conjugation i.e. alternate double bonds... - **Hypsochromic shift or Blue Shift:** It is a shift towards shorter wavelength. This is caused by removal of conjugation. - **Hyperchromic Effect:** It is an effect leading to increased absorption intensity. Auxochromes are responsible for increased intensity. - **Hypochromic Effect:** It is an effect leading to the decrease in absorption intensity due to distortion in geometry of molecule. ### Thank You Prof. S. K. Hasan Institute of Technology & Management, GIDA, Gorakhpur drskhasan@yahoo.com